skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Polito, Jordyn"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Two-dimensional (2D) absolute measurements of hydrogen peroxide (H2O2) and approximations of the hydroperoxyl radical (HO2) in the effluent of a COST Reference Microplasma Jet operated with a He/H2O feed gas are presented. Gas-phase densities are mapped using photofragmentation laser-induced fluorescence (PF-LIF) under three boundary conditions: open effluent, a solid target, and a liquid target. A novel method is presented for separating PF-LIF signals from H2O2and HO2using comparative measurements in oxygen-rich and oxygen-free environments to exploit the preferential formation of HO2in the presence of molecular oxygen. This separation strategy is supported by results from a plug-flow plasma chemistry model. Measured densities agree closely with model predictions in both magnitude and trend, while the 2D experimental distributions provide additional insight into the spatial dependencies of these species. In particular, the results show distinct differences in species transport depending on the target type: solid surfaces induce lateral deflection and reduced centerline densities, whereas liquid interfaces promote axial accumulation and higher near-axis concentrations. 
    more » « less
  2. Abstract Planar laser-induced fluorescence (LIF) was employed to measure the absolute density of hydroxyl radicals (OH) in the effluent of the COST Reference Microplasma Jet for two feed gas mixtures: He/H2O and He/O2. Experiments were conducted with the effluent propagating into air and N2environments. For the He/H2O case, measurements were also performed with the effluent impinging on a solid target at varying distances from the jet nozzle. Calibration of the OH-LIF signal from the COST-Jet was achieved by comparing it to a reference signal generated by the photofragmentation of H2O2. Results demonstrated that OH densities were sustained longer when the effluent propagates in a nitrogen environment compared to air, particularly with water added to the feed gas. The broader OH distribution in N2suggests slower consumption due to the absence of oxygen, which accelerates OH depletion in air via reactions involving O2and HO2. Even when water was not added to the feed, as in the He/O2case, appreciable OH densities were observed, due to gas impurities and reactive species interactions with atmospheric humidity, forming reaction fronts that delineate the gas flow. Two-dimensional fluid dynamics simulations elucidated the influence of atmospheric gas entrainment and solid targets on the OH distribution. Experimental trends were further compared with a zero-dimensional chemistry model to explore OH production and consumption mechanisms in air and nitrogen environments. 
    more » « less
  3. Abstract Cold atmospheric plasma devices have shown promise for a variety of plasma medical applications, including wound healing and bacterial inactivation often performed in liquids. In the latter application, plasma-produced reactive oxygen and nitrogen species (RONS) interact with and damage bacterial cells, though the exact mechanism by which cell damage occurs is unclear. Computational models can help elucidate relationships between plasma-produced RONS and cell killing by enabling direct comparison between dissimilar plasma devices and by examining the effects of changing operating parameters in these devices. In biological applications, computational models of plasma-liquid interactions would be most effective in design and optimization of plasma devices if there is a corresponding prediction of the biological outcome. In this work, we propose a hierarchal model for planktonic bacterial cell inactivation by plasma produced RONS in liquid. A previously developed reaction mechanism for plasma induced modification of cysteine was extended to provide a basis for cell killing by plasma-produced RONS. Results from the model are compared to literature values to provide proof of concept. Differences in time to bacterial inactivation as a function of plasma operating parameters including gas composition and plasma source configuration are discussed. Results indicate that optimizing gas-phase reactive nitrogen species production may be key in the design of plasma devices for disinfection. 
    more » « less
  4. Abstract Mechanisms for the cold atmospheric plasma (CAP) treatment of cells in solution are needed for more optimum design of plasma devices for wound healing, cancer treatment, and bacterial inactivation. However, the complexity of organic molecules on cell membranes makes understanding mechanisms that result in modifications (i.e. oxidation) of such compounds difficult. As a surrogate to these systems, a reaction mechanism for the oxidation of cysteine in CAP activated water was developed and implemented in a 0-dimensional (plug-flow) global plasma chemistry model with the capability of addressing plasma-liquid interactions. Reaction rate coefficients for organic reactions in water were estimated based on available data in the literature or by analogy to gas-phase reactions. The mechanism was validated by comparison to experimental mass-spectrometry data for COST-jets sustained in He/O2, He/H2O and He/N2/O2mixtures treating cysteine in water. Results from the model were used to determine the consequences of changing COST-jet operating parameters, such as distance from the substrate and inlet gas composition, on cysteine oxidation product formation. Results indicate that operating parameters can be adjusted to select for desired cysteine oxidation products, including nitrosylated products. 
    more » « less
  5. Low-temperature plasmas have seen increasing use for synthesizing high-quality, mono-disperse nanoparticles (NPs). Recent work has highlighted that an important process in NP growth in plasmas is particle trapping—small, negatively charged nanoparticles become trapped by the positive electrostatic potential in the plasma, even if only momentarily charged. In this article, results are discussed from a computational investigation into how pulsing the power applied to an inductively coupled plasma (ICP) reactor may be used for controlling the size of NPs synthesized in the plasma. The model system is an ICP at 1 Torr to grow silicon NPs from an Ar/SiH 4 gas mixture. This system was simulated using a two-dimensional plasma hydrodynamics model coupled to a three-dimensional kinetic NP growth and trajectory tracking model. The effects of pulse frequency and pulse duty cycle are discussed. We identified separate regimes of pulsing where particles become trapped for one pulsed cycle, a few cycles, and many cycles—each having noticeable effects on particle size distributions. For the same average power, pulsing can produce a stronger trapping potential for particles when compared to continuous wave power, potentially increasing particle mono-dispersity. Pulsing may also offer a larger degree of control over particle size for the same average power. Experimental confirmation of predicted trends is discussed. 
    more » « less
  6. Atmospheric pressure plasma jets (APPJs) are used to improve the adhesive and hydrophilic properties of commodity hydrocarbon polymers such as polypropylene, polyethylene, and polystyrene (PS). These improvements largely result from adding oxygen functional groups to the surface. PS functionalization is of interest to produce high value biocompatible well-plates and dishes, which require precise control over surface properties. In this paper, we discuss results from a computational investigation of APPJ functionalization of PS surfaces using He/O 2 /H 2 O gas mixtures. A newly developed surface reaction mechanism for functionalization of PS upon exposure to these plasmas is discussed. A global plasma model operated in plug-flow mode was used to predict plasma-produced species fluxes onto the PS surface. A surface site balance model was used to predict oxygen-functionalization of the PS following exposure to the plasma and ambient air. We found that O-occupancy on the surface strongly correlates with the O-atom flux to the PS, with alcohol groups and cross-linked products making the largest contributors to total oxygen fraction. Free radical sites, such as alkoxy and peroxy, are quickly consumed in the post-plasma exposure to air through passivation and cross-linking. O-atom fluences approaching 10 17  cm −2 saturate the O-occupancy on the PS surface, creating functionality that is not particularly sensitive to moderate changes in operating conditions. 
    more » « less
  7. Low temperature plasmas are an emerging method to synthesize high quality nanoparticles (NPs). An established and successful technique to produce NPs is using a capacitively coupled plasma (CCP) in cylindrical geometry. Although a robust synthesis technique, optimizing or specifying NP properties using CCPs, is challenging. In this paper, results from a computational investigation for the growth of silicon NPs in flowing inductively coupled plasmas (ICPs) using Ar/SiH4 gas mixtures of up to a few Torr are discussed. ICPs produce more locally constrained and quiescent plasma potentials. These positive plasma potentials produce an electrostatic trap for negatively charged NPs, which can significantly extend the residence time of NPs in the plasma, which in turn provides a controllable period for particle growth. The computational platforms used in this study consist of a two-dimensional plasma hydrodynamics model, a three-dimensional nanoparticle growth and trajectory tracking model, and a molecular dynamics simulation for deriving reactive sticking coefficients of silane radicals on Si NPs. Trends for the nanoparticle growth as a function of SiH4 inlet fraction, gas residence time, energy deposition per particle, pressure, and reactor diameter are discussed. The general path for particle synthesis is the trapping of small NPs in the positive electrostatic potential, followed by entrainment in the gas flow upon reaching a critical particle size. Optimizing or controlling NP synthesis then depends on the spatial distribution of plasma potential, the density of growth species, and the relative time that particles spend in the electrostatic trap and flowing through higher densities of growth species upon leaving the trap. 
    more » « less
  8. Abstract Low-pressure nonthermal flowing plasmas are widely used for the gas-phase synthesis of nanoparticles and quantum dots of materials that are difficult or impractical to synthesize using other techniques. To date, the impact of temporary electrostatic particle trapping in these plasmas has not been recognized, a process that may be leveraged to control particle properties. Here, we present experimental and computational evidence that, during their growth in the plasma, sub-10 nm silicon particles become temporarily confined in an electrostatic trap in radio-frequency excited plasmas until they grow to a size at which the increasing drag force imparted by the flowing gas entrains the particles, carrying them out of the trap. We demonstrate that this trapping enables the size filtering of the synthesized particles, leading to highly monodisperse particle sizes, as well as the electrostatic focusing of the particles onto the reactor centerline. Understanding of the mechanisms and utilization of such particle trapping will enable the design of plasma processes with improved size control and the ability to grow heterostructured nanoparticles. 
    more » « less